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Abstract

We compare three methods for refining estimates of invariant subspaces, due to Chatelin,

Dongarra/MolerAVilkinson, and Stewart. Even though these methods all apparently solve dif-

ferent equations, we show by changing variables that they all solve the same equation, the

Riccati equation. The benefit of this point of view is threefold. First, the same convergence

theory applies to all three methods, yielding a single criterion under which the last two
methods converge linearly, and a slightly stronger criterion imder which the first algorithm

converges quadratically. Second, it suggest a hybrid algorithm combining advantages of all

three. Third, it leads to algorithms (and convergence criteria) for the generalized eigenvalue

problem. These techniques are compared to techniques used in the control systems commun-
ity.
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1. iDtrodDction.

Methods for refining estimates of invariant subspaces of matrices have been suggested

in [Chatelin], [Dongarra,Moler,Wilkinson], and [Stewart]. These three methods (henceforth

called C, DMW, and S, respectively), all solve apparently different equations, since they

represent the desired invariant subspace slightly differently. However, by a simple diange of

basis, we will see that all three methods are attempting to solve the same equation, the Ric-

cati equation:

AR - RB = C + RDR

for R, which represents the error in the initial estimate of the invariant subspace.

The benefit of this unified point of view is threefold. First, it allows the same conver-

gence theory to be applied to £ill three methods, yielding the same criterion for linear conver-

gence of DMW and S, and a slightly stronger criterion for quadratic convergence of C.

Second, it suggests a hybrid algorithm (Algorithm 3 below) combining advantages of DWM,
C and S. Third, it suggests analogous algorithms (and convergence theory) for the general-

ized eigenproblem.

The Riccati equation (and its variations) have been a central object of study in the con-

trol systems commxmity for some time, and a nimiber of algorithms have been proposed and

implemented [Arnold,Laub]. The algorithms used there mirror the ones in the numerical

analysis community: converting the Riccati equation to an eigenvalue problem and using the

QR or QZ algorithms, followed by Newton iteration to refine the solution if necessary.

This paper is organized as follows. After introducing some notation in section 2, we
show how the methods DWM, C and S all reduce to solving the Riccati equation in section 3.

Section 4 discusses a linear iteration and Newton iteration for solving the Riccati equation,

and gives convergence criteria. Section 5 presents three generalizations of DWM, C and S for

solving the generalized eigenproblem, and shows how they may be again reduced to solving a

generalized Riccati equation. Section 6 generalizes the results of section 4 to solving this

generalized equation. Section 7 discusses the relative costs of the linear iteration and Newton,
and suggests a hybrid algorithm which may be seen as a form of modified Newton. Section 8
discusses future work; a numerical comparison of DWM, C and the hybrid algorithm

presented below.

2. Notation

The n by n matrix whose invariant subspace we desire will be called A . The invariant

subspace we seek will be m dimensional. We will measure errors using the 2-norm for

matrices

||r||-su^||rx||/|MI

(||j:|| denotes the 2-norm for vectors) and the Frobenius norm

\\T\\r - (2 \T^j?)'^ .

U

3. Redaction to the Riccati Equation

We first consider the method C of Chatelin. She seeks an n by m matrix X whose
columns span the desired invariant subspace. Her system of equations depends on a fixed full

rank « by m matrix Z:

AX - XiZ*AX) = , Z*X = I (C)

Now change basis so that (in the new basis) Z=[/|0]'". If Z consists of orthonormal columns



(and there is no reason it should not), then this change of basis can even be orthonormal. We
will also call the new transformed matrix A, and write it as the partitioned matrix

A =
A

12

A21 A22

where A^^ is m sub m and A22 is n-m by n-m. In this coordinate system it is easy to see

Z*X=I implies X is of the form

7
X =

where /? is an arbitrary n-m by m matrix. This lets us rewrite (Q as

A21 + A22R - /?(Au + A^R) =

or

A22R - RAii = -A21 + RAJt (C)

the promised Riccati e^juation.

In the DMW method Dcngarra, Moler and Wilkinson try to solve the equation

AX = XB pWM)
simultaneously for the n by m matrix X and the m by m matrix B. Since this is rm equations

in nm + m? unknowris, X is constrained by holding m of its rows fixed, reducing the number
of unknowns to nm . The m rows of X to hold fixed are chosen to be the "most nonsingular"

m by m submatrix of the initial approximation to X. In practice, these may be determined by

LU with pivoting. If the initial approximation of X has orthononnal columns, by an ortho-

normal change of basis we may assume that it consists of the first m columns of the identity

matrix. Thus in this new basis X may be written

7

R

with R arbitrary as before, allowing us to rewrite (DWM) as

A^i + A^/?

A21 + A227?

B
RB

Substituting the first equation for B into the second yields

A22R "" ^"11 ^ """21 RA^^R y (DWM')

the same Riccati equation as before.

Finally we consider Stewart's method S. Artually, S was originally presented not as an

algorithm but as a technique for doing perturbation theory for invariant subspaces. Nonethe-

less, it works as an algorithm as well, and the perturbation theory derived by Stewart will

later be used to derive convergence criteria for all three algorithms. S begins with an n by m
matrix X spanning an approximate invariant subspace and a n by n-m matrix X' spanning a

complementary subspace, so that the matrix {X\X'\ is nonsingular. The true invariant sub-

space is represented as X -1- X'R, where /? is n-m by m as before, and an equation is derived

for R as follows. X+X'R will be invariant if and only if the lower left n-m by m block of

X 1

[X+X'R\K']-^ A [X-¥X'R\X'] =
( [Xpf']- )-^ A {[X\X-]- )

is zero. As before, we change basis so that [Xpf'] is the identity matrix. If X consists of



orthonormal columns and X' spans the orthogonal complement of the space spanned by X,
this change of basis can be orthononnal. In this new basis we get that the lower left n-m by

m comer of

7
R I



subspace. The denominator sep measures the separation of the spectra of A^^ and Aji- If sep

is small it means some eigenvalues of A^; and A22 can be made to merge with small changes

in both An; this means the invariant subspaces belonging to the two parts of the spectrum are

unstable and hard to compute. Thus, k will be small if we start with a good initial approxi-

mate invariant subspace and if the eigenvalues associated with that subspace are well

separated from the remainder of the spectrum.

Now we turn to the quadratic convergence of C. As in [Chatelin], it is easy to see that

Jacobean of F(X) ^ AX - X(Z*AX) with respect to X is the linear map which maps S to

DF(X)iS) - iI-XZ*)AS - S(Z*AX). The standard Newton iteration would then be

X,^, = X,- DF(X,r'F(X,)

At first glance this seems problematic since there are no guarantees that, first, the condition

Z*Xt-l is fulfilled for all iterations k, and, second, that DF{X^) is nonsingular for all k. In

fact, if X is the true invariant subspace, then DF(X) will be singular if Z*AX is singular, and

if the spectrum whose corresponding subspace we seek contains zero, this will be the case.

Chatelin deals with these two problems by first showing that if Z*Xq=I, then all subsequent

iterates also satisfy Z*Xt=I, and second assuming that by shifting A to A + ct/ sing^l]arity of

Z*AX can be avoided.

We show that the same change of basis we used above leads to a simplified Newton
iteration which not only guarantees Z*X^=I but eliminates the artificial restriction on the

spcctnmi of Z*AX. This will also lead to a new convergence criterion only slightly more res-

trictive than (LinearConvergence) above. LetZ = [/|0] as above and write

X,=
I

From this it follows straightforwardly that Z*F(X,^) = 0. Also in this coordinate system

DF(X,)i )
=

-S,(A,,+A:^R,)

from which we see that in solving

we may take S=0. This corresponds to Chatelin's statement that DF{X)~^ maps the space of

matrices M such that Y*M = Q into itself. Since R^^y=R^-Z2, a little more manipulation leads

to the iteration

('42:-Mi2)^i+i - ^i+iC'^u+'^ii^t) = -^21 - Mi2^i .
(r^ewton)

a set of linear equations for ^;+i. This is the same iteration one gets applying Newton to

Ai-Ji - ^11 • ^21 ~ RAJl = directly.

The next theorem states a condition under whidi (Newton) converges:

Theorem 2: Let k be defined as in Theorem 1. Then if

K < -—
- , (QuadraticConvergence)

(Newton) will converge quadratically to the unique solution R inside the ball given in

Theorem 1. If £,/?,-/? is the error at the i-th step of the iteration, then



Proof: Take (Newton), subtract from it the same equation with the solution R substituted for

R^ and R^ + i,
and rearrange to obtain

implying

'^**^l^ ^ sep(A,,+A^,^22-Mu) ^
^

Thus quadratic convergence is evident, as long as the denominator is bounded away from 0.

To prove this we need bounds on the growth of ||/?il|jr.

From (Newton) we see that

,^ I,
^ l^2illf -^ \M\f\K\\'

From [Stevyarl.] we have the lemma that

sep(A+£^+F) a sep(A^) - \^\\p - \\F\\f (Lemma)

which implies that

WRk.iW

Abbreviating

we see that

\\A



Algorithm 1:

1) Given bases X and X' for an approximate invariant subspace and a complementary

space, transform the problem so that [X|X']=/.

2) Take one step of (Iter) with Rq=0 yielding R, replace X by the better estimate X+X'/J

and return to step 1).

In matrix notation this algorithm produces a sequence /?^*' which determine a sequence of

similarity transforms such that

/ / / /

-2)/?^'' /

/"I
2 /?") /
w-i

converges to a matrix with the lower left n-m by m comer equal to 0. 2) ^^'^ ** ^^ *a™c a*

the Ri, generated by Newton.

We may see this as follows. Obviously /?^^) is the same as the Ry produced by (Newton).
k k

Now assume by induction that 2) ^^'^ = ^k- Abbreviate 2 '^^'^ by R^. Executing step 1)

/-I /-I

amounts by induction to transforming A to

/

-R^ I

I

R^ I

^11 *" ^12^ ^12

A A^]_^A Aj^** ^21 22^ 22~" 12

Executing step 2) means solving

(A22-/?^/\i.)/?(**^) - /?(*+i)(Aii+Ai2^2) = ^^Aii+^^A^/J^-Aji-Ajz/?^

or

(A22-/?^-4i:)(/?^+/?^*^^0 - (/?^+/f(**^')(Aii+Ai2^^) = -A2:--R^i4^/?2

*+i

for J?'*"^^). Comparing with (Newton) shows i?(*'^^)+/?2 = 2 ^^'^ = '^i+i »* desired.

/-I

5. The Generalized Eigenproblem

The methods described above generalize to the regular generalized eigenproblem

A-\B. We require regularity {A-\B square and det(A-XJ) not identically zero) since the

eigenproblem is otherwise not well-posed. The concept of invariant subspace for the standard

eigenproblem, a space X satisfying AX^X, is replaceid by a pair of deflating subspaces X and

Y of equal dimension such that AX+flX=Y. Thus any algorithm is at least conceptually

going to determine two spaces simultaneously. In this section we show how C, DMW and S

generalize, how they are all equivalent to solving a generalized Riccati equation, and how the

same convergence theory applies to all three as before.

First we show how to generalize Chatelin's algorithm C. We will seek two n by m
matrices X and Y as bases for X and Y. As before, we normalize X and Y by another full

rank n by m matrix Z:

AX - Y(Z*AX) = Z*X = I

BX - Y(Z*BX) = ' Z*Y = I
(GenC)

As before we change bases (which means performing the same equivalence transformation on

A and B) so that Z = [/|0]'' and rewrite X and K as



X =
/

R fl-
As before we call the transformed matrices A and B and partition tLem as

^11 ^21

1 12 f^ll

rBn B
and

n ''21

with All ^""^ ^n

(GenC)

^12 ^22]

being m by m and A22 and B22 being n-mbyn— m. IfZ consists of ortho-

normal columns, this transformation may be taken to be orthonormal. Plugging into (GenC)

yields

A22^ ~ ^^11 ~ ~^21 "^ LA]Ji

DjjK ~ '^ u. ~ ~°2i "^ LB]^

the promised generalized Riccati equation.

There are at least two generalizations of DMW to the generalized eigenproblem. One
might try to solve the equation

AX = BXC

where X is an n by m matrix whose columns span X, and C is an m by m matrix. The prob-

lem with this generalization of DMW is Aat it assumes BX is of full rank, since otherwise C
might not exist. If the pencil A-\B has an infinite eigenvalue whose deflating subspace X we
want, then BX will not be of full rank (numerically it will be nearly rank deficient) and con-

sequently C will be very ill conditioned and hard to determine. If one knows B is well condi-

tioned, however, this method could be used.

A better generalization of DMW is

AX = YAy , BX = YBy (GenDMW)

where X and Y are both n by m matrices and Ay and By are both m by m matrices. As in

DMW, we will hold m rows each of X and Y constant, so that (GenDMW) consists of 2nm
equations in Inrn unknowns.

Performing an equivalence transformation so that X and Y are of the form

X = Y =
tl

and plugging into (GenDMW) yields

Aj^2. "* "12** ^ Ay

^21 + ^2:^ = ^y B21 t" °22 ^^ LBy

Substituting the expressions for Ay and By into the second equations yields

A22R - LAii = -A21 + LAJi

B22R ~ ^-B II ~ ~"2\ "^ LB i^R
(GenDMW)

the same generali.red Riccati equation as before.

Stewart also deals with the generalized eigenproblem in [Stewart]. Again, this work was
presented originally not as an algorithm but as a technique for doing perturbation theory.

Stewart takes n by m matrices X and Y spanning approximate deflating subspaces as well as n

by H-m matrices X' and Y' spanning complementa]7 subspaces so that [X\X'] and [Y\Y'] are

nonsingular. The true deflating subspaces are represented as X+X'R and Y+Y'L, where R
and L are n-m by m matrices to be determined. An equation for R and L is determined as

follows. X+X'R and Y + Y'L will be deflating if and only if the lower left n-m by m corners



of

and

[Y+Y'L\Y']-^ A [X+n?|X'] = ([Y\Y']-

[Y+Y'L\Y']'^ B • {X-^X'R\K'] = ([Y\Y']-

I

L I

1

L I

r' A i[x\x']-

r' B i[x\x']-

I

R I

1

R 1 )

are zero. As before, transform from the right and left so that [X\X'] and [Y\Y'] are identity

matrices, if X and Y consist of orthonormal columns and X' and Y' span the orthogonal com-

plements of the spaces spanned by X and Y, respectively, then this change of bases can be

orthonorroal. In this new bases we get that the lower left comers of

/

L I



Furthermore, the cxinvergence is linear with a contraction constant of no more than

1 - (1-4k)^ .

On comparing Theorems 1 and 3, we see they are almost identical, and indeed Stewart

derives them both as special cases of a more general theorem which says when the iteration

Tx,^i = g - ^(xi)

converges to a solution of Tx = g - 4>(x), Jt a member of a Banach space, T an invertible

linear operator, g a constant member of the Banach space, and <> a "quadratic" operator.

Also, the interpretation of k is similar: it is small if the initial approxir-.ste deflating sub-

spaces are good approximations and if tlie spectrum associated with the desired deflating sub-

space is will separated from its complement.

Now we turn to the convergence of Newton's method. The same approach as before

>-ields

('*22-Mu)^i+i - '?i+i('^ii+^u'?J = -^21 - Mi2«i
(GenNewton)

a set of linear equations for (/?i+i,Li+;). The next theorem states a condition under which

(GenNewton) converges:

Theorem 4: Let k be defined as in Theorem 3. Then if

K < — (GenQuadraticConvergence)

(GenNewton) will converge quadratically to the unique solution (/?,/,) inside the ball given in

Theorem 3. If f^ - R^-R and Fj L^-L, then

ll(£..:,F,.,)|!, ^ —l^i^lML . 1 . ||(£^^^)|^ .

dU(i4, 1,^2:^6' 11,^22) *

Proof: The proof is analogous to the proof of Theorem 3. Take (GenNewton), subtract the

same equation with R substituted for ^j and /?4+i and L substituted for I^ and I.jt+i, and rear-

range to obtain

iA22~^k^n)^k^i - Fi+i(Aji4-A^/?i) = -F^^E^

i^22~^k^i2)^k+i ~ f^k->-ii^n'^^n^k) ~ ~^k^n^k

implying

\m,:,F,,0\\r^
dif(A,,+A^„A:2-Mi2;flu+fli2/?.^22-Mi2) ' ^ ^

Thus, quadratic convergence is evident as long as the denominator is bounded away from 0.

To prove this we need bounds on the growth of ||(i?i,I.i)|!/r.

From (GenNewton) we see that

|,.^ , .„ ^ \\(Ar.^2J\\F + \\(A:,^^)\\r\\(R,XM
III k^i^k.i)\\F

ail(A,,+A:Ji,A,2-I^kAi2,Bn-^B^,^,2-LkBn) '

From [Stewart] we have the lemma (Genl^mma) that

10



I

which implies that

,,. .,, ^ ||(/1::^;J|U 4- ||(A^^^)||;r-||(i?,A)ll>

Abbreviating

im.iA.JWf
dif(Aa^22;fiu.B2:)

we sec that

A
1 - 2 kA

with /o=0. This is the same recurrence as in Theorem 3, and it is easy to see the rest of the

proof follows as in the earlier theorem. Q.E.D.

7. The cost of Iteration versos Newton

In this section we discuss ways to solve the linear equations needed at eadi iteration of

the algorithms, and show that (Iter) and (Genlter) cost only O(n^) arithmetic operations per

iteration after a preprocessing cost of O(n^), whereas (Newton) and (GenNewton) cost O(n^)

operations per iteration.

Let us consider the standard eigenproblem Hrst. Iteration requires the solution of the

set of linear equations

for /?,+i at each iteration. This equation, called Sylvester's equation, has had solutions pro-

posed in both [Bartels,Stewart] and [Golub,Nash,Van Loan]. Both algorithms have the pro-

perty that after a preprocessing step (reducing An to triangular or Hessenberg form) whidi

takes 0(m^+(n-m)^) operations, it is possible to solve (Iter) for R,+i in just

0((n-m)m- + m(n — m)*) operations. This savings is possible because the preprocessing

reduces (Iter) to a logically trianguJar system. If m«n, a common case, preprocessing is

Oin^) and solving is O(n^). Thus (Iter) is cheap after first preprocessing.

Newton, on the other hand, requires the solution of

at each step. This is also a Sylvester equation for /?,+i, but now the coefficient matrices

Aii-RfA^ and A^i-¥Ai2Ri vary from step to step, making it necessary to preprocess at each

step or at least frequently. Thus each step could take 0(n-') operations instead of O(n^). This

fact seems to make a modified Newton method in which the coefficient matrices are updated

either only approximately or only occasionally attractive. In particular, it seems (Newton)
could be solved iteratively for i?,+i using a quick solver of A2^-XAii=Y as an approximate

invene for iterative refinement This would be especially true if the matrix were nearly block

triangular so that R were small; then the operator A2^-XA^i would be a good approximation

to {A22-RA]2)^~^i^ii^^]J^i)- However, as we now show, we should not expect this

scheme to be superior to using (Iter) for a while to get an approximate R, updating the

matrix by transforming so that [X-irX'R^'] is the identity, and using (Iter) again. Letting 5,

denote the jth iterate in the following iterative refinement algorithm for (Newton):

Algorithm 2:

U



1) Compute the residual r, ™ -A2i-RiAn^i~ i^22~^1^12)^1'*' ^t(.^n'^^u^i)-

2) Solve Aj^Jj-d^ii = r, for the correction J,.

3) Update S,+i=S,+ J,.

After some manipulation we see

^iiSi^-St^An = -A2i+Mi2'?/+Mu(^/-''/)+(^/-^/M:2^/ (ModNewton)

Since we expect 5, to be a better approximation to R than R„ we could let /?,=5, in the above

formula. But then (ModNewton) would be identical to (Iter). This leads us to recommend the

following version of the algorithm given earlier (as a matrix interpretation of Newton):

Algorithm 3:

1) Given bases X and X' for an approximate invariant subspace and a complementary

space, transform the problem the problem so that [XlX']=/.

2) Take one or more steps of (Iter) with Rq=0, replace X by the better estimate X+X'R

and return to step 1).

The number of steps of (Iter) to take in step 2 above would depend on the convergence rate:

if it is fast enough, there is no reason to return to step 1 and pay O(n') operations.

The same considerations apply to the generalized eigenproblem. It turns out that if the

All and fl„ are triangular, the linear system

^22Rl + i
~ ^/ + 1^11 ~ ^li^lfRl)

^t2Ri+i ~ ^i+i^n ~ ^2(^1*^1)

is logically block triangular with 2 by 2 blocks, so that we can solve for the entries of L,+i

and /?,+! two at a time by substitution. (Analogs of both the [Bartels, Stewart] and

[Golub,Nash,Van Loan]) algorithms are possible.) Thus again O(r') operations of prepro-

cessing allow each iteration of (Genlter) to cost only O(n^) iterations. Eadi iteration of

(GenNewton), on the other hand, costs O(n') as above, leading us to recommend an algo-

rithm like Algorithm 3 above.

It is of interest to note the work on solving the Riccati equation in the control systems

community ([Kleinman],[Amold,Laub]). They are interested in solving variations of the Ric-

cati equation (S), in particular when Ai^=-Al2- Their standard approach is to transform to

the corresponding matrix eigenvalue problem and use the QR algorithm. If more accuracy is

needed, they use Newton. These algorithms have been implemented in a package of FOR-
TRAN subroutine called RICPACK. Currently none of these algorithms apply to the general

nonsymmetric version of the Riccati equation we consider in this paper, just the special form

mentioned above.

8. Fnture Work

The approach taken in this paper does not tell us which of the algorithms presented has

better numerical properties. In a future paper we intend to make numerical experiments com-

paring the speeds and accuracies of the algorithm of Dongarra, Moler and Wilkinson, the

algorithm of Chatelin, and Alj^orithm 3 presented in the last section. In addition, the ver-

sions of these algorithms for the generalied eigenproblem will be programmed and com-

pared.
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